When actions speak louder than clicks: A combined model of purchase probability and long-term customer satisfaction

Gal Lavee, Noam Koenigstein, Oren Barkan

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Maximizing sales and revenue is an important goal of online commercial retailers. Recommender systems are designed to maximize users' click or purchase probability, but often disregard users' eventual satisfaction with purchased items. As result, such systems promote items with high appeal at the selling stage (e.g. an eye-catching presentation) over items that would yield more satisfaction to users in the long run. This work presents a novel unified model that considers both goals and can be tuned to balance between them according to the needs of the business scenario. We propose a multi-task probabilistic matrix factorization model with a dual task objective: predicting binary purchase/no purchase variables combined with predicting continuous satisfaction scores. Model parameters are optimized using Variational Bayes which allows learning a posterior distribution over model parameters. This model allows making predictions that balance the two goals of maximizing the probability for an immediate purchase and maximizing user satisfaction and engagement down the line. These goals lie at the heart of most commercial recommendation scenarios and enabling their balance has the potential to improve value for millions of users worldwide. Finally, we present experimental evaluation on different types of consumer retail datasets that demonstrate the benefits of the model over popular baselines on a number of well-known ranking metrics.

שפה מקוריתאנגלית
כותר פרסום המארחRecSys 2019 - 13th ACM Conference on Recommender Systems
מוציא לאורAssociation for Computing Machinery, Inc
עמודים287-295
מספר עמודים9
מסת"ב (אלקטרוני)9781450362436
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 10 ספט׳ 2019
פורסם באופן חיצוניכן
אירוע13th ACM Conference on Recommender Systems, RecSys 2019 - Copenhagen, דנמרק
משך הזמן: 16 ספט׳ 201920 ספט׳ 2019

סדרות פרסומים

שםRecSys 2019 - 13th ACM Conference on Recommender Systems

כנס

כנס13th ACM Conference on Recommender Systems, RecSys 2019
מדינה/אזורדנמרק
עירCopenhagen
תקופה16/09/1920/09/19

הערה ביבליוגרפית

Publisher Copyright:
© 2019 Association for Computing Machinery.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'When actions speak louder than clicks: A combined model of purchase probability and long-term customer satisfaction'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי