תקציר
The task of rain detection, or wet-dry classification using measurements from commercial microwave links (CMLs) is a subject that been studied in depth. However, these studies are based on direct measurement of the signal level, which is known to be attenuated by rain. In this paper we present, for the first time an empirical study on rain classification using records of transmissions errors in the CMLs. Based on a dataset of measurements taken from operational cellular backhaul networks and meteorological measurements, and using long short-term memory (LSTM) units with a multi-variable time series, we demonstrate that measurements of microwave link error are related to rain and can even be used for rain detection (wet-dry classification). We evaluate the performance of LSTM on CMLs empirically, and analyze the results by comparison with rain detection based on attenuation measurements in the same links.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, SAM 2018 |
מוציא לאור | IEEE Computer Society |
עמודים | 149-153 |
מספר עמודים | 5 |
מסת"ב (מודפס) | 9781538647523 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 27 אוג׳ 2018 |
פורסם באופן חיצוני | כן |
אירוע | 10th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2018 - Sheffield, בריטניה משך הזמן: 8 יולי 2018 → 11 יולי 2018 |
סדרות פרסומים
שם | Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop |
---|---|
כרך | 2018-July |
ISSN (אלקטרוני) | 2151-870X |
כנס
כנס | 10th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2018 |
---|---|
מדינה/אזור | בריטניה |
עיר | Sheffield |
תקופה | 8/07/18 → 11/07/18 |
הערה ביבליוגרפית
Publisher Copyright:© 2018 IEEE.