Variational relevance vector machine for tabular data

Dmitry Kropotov, Dmitry Vetrov, Lior Wolf, Tal Hassner

פרסום מחקרי: פרסום בכתב עתמאמר מכנסביקורת עמיתים


We adopt the Relevance Vector Machine (RVM) framework to handle cases of tablestructured data such as image blocks and image descriptors. This is achieved by coupling the regularization coefficients of rows and columns of features. We present two variants of this new gridRVM framework, based on the way in which the regularization coefficients of the rows and columns are combined. Appropriate variational optimization algorithms are derived for inference within this framework. The consequent reduction in the number of parameters from the product of the table's dimensions to the sum of its dimensions allows for better performance in the face of small training sets, resulting in improved resistance to overfitting, as well as providing better interpretation of results. These properties are demonstrated on synthetic data-sets as well as on a modern and challenging visual identification benchmark.

שפה מקוריתאנגלית
עמודים (מ-עד)79-94
מספר עמודים16
כתב עתJournal of Machine Learning Research
סטטוס פרסוםפורסם - 2010
אירוע2nd Asian Conference on Machine Learning, ACML 2010 - Tokyo, יפן
משך הזמן: 8 נוב׳ 201010 נוב׳ 2010

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Variational relevance vector machine for tabular data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי