Variants of the discrete Fréchet distance under translation

Omrit Filtser, Matthew J. Katz

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The (discrete) Fréchet distance (DFD) is a popular similarity measure for curves. Often the input curves are not aligned, so one of them must undergo some transformation for the distance computation to be meaningful. Ben Avrahametal.[5] presented an O(m3n2(1+ log(n/m))log(m + n))-time algorithm for DFD between two sequences of points of sizes m and n in the plane under translation. In this paper we consider two variants of DFD, both under translation. For DFD with shortcuts in the plane, we present an O(m2n2 log2(m + n))-time algorithm, by presenting a dynamic data structure for reachability queries in the underlying directed graph. In 1D, we show how to avoid the use of parametric search and remove a logarithmic factor from the running time of (the 1D versions of) these algorithms and of an algorithm for the weak discrete Fréchet distance; the resulting running times are thus O(m2n(1+log(n/m))), forthediscreteFréchetdistance, O(mnlog(m+n)), fortheshortcuts variant, and O(mnlog(m + n)(loglog(m + n))3) for the weak variant. Our 1D algorithms follow a general scheme introduced by Martello et al. [22] for the Balanced Optimization Problem (BOP), which is especially useful when an efficient dynamic version of the feasibility decider is available. We present an alternative scheme for BOP, whose advantage is that it yields efficient algorithms quite easily, without having to devise a specially tailored dynamic version of the feasibility decider. We demonstrate our scheme on the most uniform path problem (significantly improving the known bound), and observe that weak DFD under translation in 1D is a special case of it.

שפה מקוריתאנגלית
עמודים (מ-עד)156-175
מספר עמודים20
כתב עתJournal of Computational Geometry
כרך11
מספר גיליון1
סטטוס פרסוםפורסם - 2020
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Publisher Copyright:
© 2020, Carleton University. All rights reserved.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Variants of the discrete Fréchet distance under translation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי