תקציר
We establish universality limits for measures on a smooth closed contour Γ in the plane. Assume that μ is a regular measure on Γ, in the sense of Stahl, Totik, and Ullmann. Let Γ1 be a closed subarc of Γ, such that μ is absolutely continuous in an open arc containing Γ1, and μ′ is positive and continuous in that open subarc. Then universality for μ holds in Γ1, in the sense that the reproducing kernels (Kn (z, t)) for μ satisfy (Formula Presented) uniformly for z0 ∈ Γ1, and s, t in compact subsets of the complex plane. Here (Formula Presented) is the sinc kernel, and ф is a conformal map of the exterior of Γ onto the exterior of the unit ball.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Contemporary Mathematics |
מוציא לאור | American Mathematical Society |
עמודים | 187-197 |
מספר עמודים | 11 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2016 |
סדרות פרסומים
שם | Contemporary Mathematics |
---|---|
כרך | 667 |
ISSN (מודפס) | 0271-4132 |
ISSN (אלקטרוני) | 1098-3627 |
הערה ביבליוגרפית
Publisher Copyright:© 2016 E. Levin, D. S. Lubinsky.