Tree Versus Geometric Representation of Tests and Items

Michal Beller

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Factor-analytic techniques and multidimensional scaling models are the traditional ways of representing the interrelations among tests and items. Both can be classified as geometric approaches. This study at tempted to broaden the scope of models traditionally used, and to apply an additive tree model (ADDTREE) that belongs to the family of network models. Correla tion matrices were obtained from three studies and were analyzed using two representation models: Smallest Space Analysis (ssA), which is a multidimen sional scaling model, and ADDTREE. The results of both analyses were compared for the two criteria of goodness of fit and interpretability. To enable a com parison with the more traditional factor-analytic ap proach, the data were also subjected to principal com ponents analyses. ADDTREE fared better in both comparisons. Moreover, ADDTREE lends itself readily to an interpretation in terms of hierarchical cluster structure, whereas it is difficult to interpret SSA's di mensions. ADDTREE'S close fit to the data and its co herence of presentation make it a convenient means of representing tests and items.

שפה מקוריתאנגלית
עמודים (מ-עד)13-28
מספר עמודים16
כתב עתApplied Psychological Measurement
כרך14
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - מרץ 1990
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Tree Versus Geometric Representation of Tests and Items'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי