Transformations of Boolean functions

Jeffrey M. Dudek, Dror Fried

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Boolean functions are characterized by the unique structure of their solution space. Some properties of the solution space, such as the possible existence of a solution, are well sought after but difficult to obtain. To better reason about such properties, we define transformations as functions that change one Boolean function to another while maintaining some properties of the solution space. We explore transformations of Boolean functions, compactly described as Boolean formulas, where the property is to maintain is the number of solutions in the solution spaces. We first discuss general characteristics of such transformations. Next, we reason about the computational complexity of transforming one Boolean formula to another. Finally, we demonstrate the versatility of transformations by extensively discussing transformations of Boolean formulas to “blocks,” which are solution spaces in which the set of solutions makes a prefix of the solution space under a lexicographic order of the variables.

שפה מקוריתאנגלית
כותר פרסום המארח39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019
עורכיםArkadev Chattopadhyay, Paul Gastin
מוציא לאורSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
מסת"ב (אלקטרוני)9783959771313
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - דצמ׳ 2019
אירוע39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019 - Bombay, הודו
משך הזמן: 11 דצמ׳ 201913 דצמ׳ 2019

סדרות פרסומים

שםLeibniz International Proceedings in Informatics, LIPIcs
כרך150
ISSN (מודפס)1868-8969

כנס

כנס39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019
מדינה/אזורהודו
עירBombay
תקופה11/12/1913/12/19

הערה ביבליוגרפית

Publisher Copyright:
© Jeffrey M. Dudek and Dror Fried; licensed under Creative Commons License CC-BY.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Transformations of Boolean functions'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי