תקציר
We propose a novel approach for estimating the difficulty and transferability of supervised classification tasks. Unlike previous work, our approach is solution agnostic and does not require or assume trained models. Instead, we estimate these values using an information theoretic approach: Treating training labels as random variables and exploring their statistics. When transferring from a source to a target task, we consider the conditional entropy between two such variables (i.e., label assignments of the two tasks). We show analytically and empirically that this value is related to the loss of the transferred model. We further show how to use this value to estimate task hardness. We test our claims extensively on three large scale data sets - -CelebA (40 tasks), Animals with Attributes∼2 (85 tasks), and Caltech-UCSD Birds∼200 (312 tasks) - -together representing 437 classification tasks. We provide results showing that our hardness and transferability estimates are strongly correlated with empirical hardness and transferability. As a case study, we transfer a learned face recognition model to CelebA attribute classification tasks, showing state of the art accuracy for highly transferable attributes.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2019 International Conference on Computer Vision, ICCV 2019 |
מוציא לאור | Institute of Electrical and Electronics Engineers Inc. |
עמודים | 1395-1405 |
מספר עמודים | 11 |
מסת"ב (אלקטרוני) | 9781728148038 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - אוק׳ 2019 |
פורסם באופן חיצוני | כן |
אירוע | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, קוריאה הדרומית משך הזמן: 27 אוק׳ 2019 → 2 נוב׳ 2019 |
סדרות פרסומים
שם | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
כרך | 2019-October |
ISSN (מודפס) | 1550-5499 |
כנס
כנס | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 |
---|---|
מדינה/אזור | קוריאה הדרומית |
עיר | Seoul |
תקופה | 27/10/19 → 2/11/19 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 IEEE.