Toward Explainable Automatic Classification of Children’s Speech Disorders

Dima Shulga, Vered Silber-Varod, Diamanta Benson-Karai, Ofer Levi, Elad Vashdi, Anat Lerner

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


Early and adequate diagnosis of speech disorders can contribute to the quality of the treatment and thus to treatment success rates. Using acoustic analysis of the speech of children with speech disorders may aid therapists in the diagnostic process by identifying the acoustic characteristics that are unique to a specific disorder and that distinguish it from normal speech development. The purpose of this work is to investigate the feasibility of the automatic detection of speech disorders based on children’s voices. In this preliminary study, using a dataset of utterance recordings of 24 children whose mother tongue is Hebrew, we propose an automatic system that may facilitate accurate speech assessment by therapists by providing a preliminary diagnosis and explainable insights about the model’s predictions. We built a serial, two-step network that is both powerful and possibly interpretable. The first step can model the complex relations between acoustic features and the speech disorder while the second can shed light on the utterances that make the greatest contribution to the final classification. Our preliminary results focus on the broad spectrum of speech disorders. In future work, we plan to design a system that will be able to detect childhood apraxia of speech (CAS) specifically and shed light on the differences in the speech of individuals with CAS and those with other speech disorders.

שפה מקוריתאנגלית
כותר פרסום המארחSpeech and Computer - 22nd International Conference, SPECOM 2020, Proceedings
עורכיםAlexey Karpov, Rodmonga Potapova
מוציא לאורSpringer Science and Business Media Deutschland GmbH
מספר עמודים11
מסת"ב (מודפס)9783030602758
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2020
אירוע22nd International Conference on Speech and Computer, SPECOM 2020 - St. Petersburg, רוסיה
משך הזמן: 7 אוק׳ 20209 אוק׳ 2020

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך12335 LNAI
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349


כנס22nd International Conference on Speech and Computer, SPECOM 2020
עירSt. Petersburg

הערה ביבליוגרפית

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Toward Explainable Automatic Classification of Children’s Speech Disorders'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי