Thermal Rates and High-Temperature Tunneling from Surface Reaction Dynamics and First-Principles

Florian Nitz, Liang Zhang, Nils Hertl, Igor Rahinov, Oihana Galparsoro, Alexander Kandratsenka, Theofanis N. Kitsopoulos, Daniel J. Auerbach, Hua Guo, Alec M. Wodtke, Dmitriy Borodin

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Studying dynamics of the dissociative adsorption and recombinative desorption of hydrogen on copper surfaces has shaped our atomic-scale understanding of surface chemistry, yet experimentally determining the thermal rates for these processes, which dictate the outcome of catalytic reactions, has been impossible so far. In this work, we determine the thermal rate constants for dissociative adsorption and recombinative desorption of hydrogen on Cu(111) between 200 and 1000 K using data from reaction dynamics experiments. Contrary to current understanding, our findings demonstrate the predominant role of quantum tunneling, even at temperatures as high as 400 K. We also provide precise values for the reaction barrier (0.619 ± 0.020 eV) and adsorption energy (0.348 ± 0.026 eV) for H2 on Cu(111). Remarkably, the thermal rate constants are in excellent agreement with a first-principles quantum rate theory based on a new implementation of ring polymer molecular dynamics for reactions on surfaces, paving the way to discovering better catalysts using reliable and efficient computational methods.

שפה מקוריתאנגלית
עמודים (מ-עד)31538-31546
מספר עמודים9
כתב עתJournal of the American Chemical Society
כרך146
מספר גיליון46
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 8 נוב׳ 2024

הערה ביבליוגרפית

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Thermal Rates and High-Temperature Tunneling from Surface Reaction Dynamics and First-Principles'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי