The Interplay of Causality and Myopia in Adversarial Channel Models

Bikash Kumar Dey, Sidharth Jaggi, Michael Langberg, Anand D. Sarwate, Carol Wang

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

The difference in capacity formulae between worst-case and average-case channel noise models has been part of information theory since the early days of the field. This paper continues a line of work studying intermediate models in which the channel behavior can depend partially on the transmitted codeword. In particular, we consider a model in which a binary erasure channel (with maximum fraction of erasures p) is controlled by an adversary who can observe the transmitted codeword through an independent and memoryless erasure channel (with erasure probability q). Upper and lower bounds on the capacity are given for two models: a noncausal model, in which the adversary can choose their erasures based on the entire (partially observed) codeword, and a causal model, in which at each time the adversary must choose its erasures based on the current and previously observed codeword bits. The achievable rate for the noncausal case is larger than the Gilbert-Varshamov bound and for some parameter ranges exceeds the linear programming (LP) bound; we also provide a non-trivial outer bound on the capacity. For the causal case, we show the capacity is 1-2p+q for p ≥ q (prior work shows the capacity to equal 1-p when p<q). Our code construction in both scenarios are novel, requiring the encoder to carefully add 'low-weight correlated noise' to its transmission.

שפה מקוריתאנגלית
כותר פרסום המארח2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים1002-1006
מספר עמודים5
מסת"ב (אלקטרוני)9781538692912
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יולי 2019
פורסם באופן חיצוניכן
אירוע2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, צרפת
משך הזמן: 7 יולי 201912 יולי 2019

סדרות פרסומים

שםIEEE International Symposium on Information Theory - Proceedings
כרך2019-July
ISSN (מודפס)2157-8095

כנס

כנס2019 IEEE International Symposium on Information Theory, ISIT 2019
מדינה/אזורצרפת
עירParis
תקופה7/07/1912/07/19

הערה ביבליוגרפית

Publisher Copyright:
© 2019 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'The Interplay of Causality and Myopia in Adversarial Channel Models'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי