The fundamental theorems of affine and projective geometry revisited

Shiri Artstein-Avidan, Boaz A. Slomka

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The fundamental theorem of affine geometry is a classical and useful result. For finite-dimensional real vector spaces, the theorem roughly states that a bijective self-mapping which maps lines to lines is affine-linear. In this paper, we prove several generalizations of this result and of its classical projective counterpart. We show that under a significant geometric relaxation of the hypotheses, namely that only lines parallel to one of a fixed set of finitely many directions are mapped to lines, an injective mapping of the space must be of a very restricted polynomial form. We also prove that under mild additional conditions the mapping is forced to be affine-additive or affine-linear. For example, we show that five directions in three-dimensional real space suffice to conclude affine-additivity. In the projective setting, we show that n + 2 fixed projective points in real n-dimensional projective space, through which all projective lines that pass are mapped to projective lines, suffice to conclude projective-linearity.

שפה מקוריתאנגלית
מספר המאמר1650059
כתב עתCommunications in Contemporary Mathematics
כרך19
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אוק׳ 2017
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Publisher Copyright:
© 2017 World Scientific Publishing Company.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'The fundamental theorems of affine and projective geometry revisited'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי