תקציר
A crucial component for the scene text based reasoning required for TextVQA and TextCaps datasets involve detecting and recognizing text present in the images using an optical character recognition (OCR) system. The current systems are crippled by the unavailability of ground truth text annotations for these datasets as well as lack of scene text detection and recognition datasets on real images disallowing the progress in the field of OCR and evaluation of scene text based reasoning in isolation from OCR systems. In this work, we propose TextOCR, an arbitrary-shaped scene text detection and recognition with 900k annotated words collected on real images from TextVQA dataset. We show that current state-of-the-art text-recognition (OCR) models fail to perform well on TextOCR and that training on TextOCR helps achieve state-of-the-art performance on multiple other OCR datasets as well. We use a TextOCR trained OCR model to create PixelM4C model which can do scene text based reasoning on an image in an end-to-end fashion, allowing us to revisit several design choices to achieve new state-of-the-art performance on TextVQA dataset.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
מוציא לאור | IEEE Computer Society |
עמודים | 8798-8808 |
מספר עמודים | 11 |
מסת"ב (אלקטרוני) | 9781665445092 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2021 |
פורסם באופן חיצוני | כן |
אירוע | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, ארצות הברית משך הזמן: 19 יוני 2021 → 25 יוני 2021 |
סדרות פרסומים
שם | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (מודפס) | 1063-6919 |
כנס
כנס | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Virtual, Online |
תקופה | 19/06/21 → 25/06/21 |
הערה ביבליוגרפית
Publisher Copyright:© 2021 IEEE.