Sum coloring interval and κ-claw free graphs with application to scheduling dependent jobs

Magnús M. Halldórsson, Guy Kortsarz, Hadas Shachnai

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We consider the sum coloring and sum multicoloring problems on several fundamental classes of graphs, including the classes of interval and κ-claw free graphs. We give an algorithm that approximates sum coloring within a factor of 1.796, for any graph in which the maximum κ-colorable subgraph problem is polynomially solvable. In particular, this improves on the previous best known ratio of 2 for interval graphs. We introduce a new measure of coloring, robust throughput, that indicates how "quickly" the graph is colored, and show that our algorithm approximates this measure within a factor of 1.4575. In addition, we study the contiguous (or non-preemptive) sum multicoloring problem on κ-claw free graphs. This models, for example, the scheduling of dependent jobs on multiple dedicated machines, where each job requires the exclusive use of a most κ machines. Assuming that κ is a fixed constant, we obtain the first constant factor approximation for the problem.

שפה מקוריתאנגלית
עמודים (מ-עד)187-209
מספר עמודים23
כתב עתAlgorithmica
כרך37
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - נוב׳ 2003
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Sum coloring interval and κ-claw free graphs with application to scheduling dependent jobs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי