Submodularity on hypergraphs: From sets to sequences

Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi

פרסום מחקרי: תוצר מחקר מכנסהרצאהביקורת עמיתים

תקציר

In a nutshell, submodular functions encode an intuitive notion of diminishing returns. As a result, submodularity appears in many important machine learning tasks such as feature selection and data summarization. Although there has been a large volume of work devoted to the study of submodular functions in recent years, the vast majority of this work has been focused on algorithms that output sets, not sequences. However, in many settings, the order in which we output items can be just as important as the items themselves. To extend the notion of submodularity to sequences, we use a directed graph on the items where the edges encode the additional value of selecting items in a particular order. Existing theory is limited to the case where this underlying graph is a directed acyclic graph. In this paper, we introduce two new algorithms that provably give constant factor approximations for general graphs and hypergraphs having bounded in or out degrees. Furthermore, we show the utility of our new algorithms for real-world applications in movie recommendation, online link prediction, and the design of course sequences for MOOCs.

שפה מקוריתאנגלית
עמודים1177-1184
מספר עמודים8
סטטוס פרסוםפורסם - 2018
אירוע21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, ספרד
משך הזמן: 9 אפר׳ 201811 אפר׳ 2018

כנס

כנס21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
מדינה/אזורספרד
עירPlaya Blanca, Lanzarote, Canary Islands
תקופה9/04/1811/04/18

הערה ביבליוגרפית

Publisher Copyright:
Copyright 2018 by the author(s).

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Submodularity on hypergraphs: From sets to sequences'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי