Submodular Maximization in Clean Linear Time

Wenxin Li, Moran Feldman, Ehsan Kazemi, Amin Karbasi

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

In this paper, we provide the first deterministic algorithm that achieves 1/2-approximation for monotone submodular maximization subject to a knapsack constraint, while making a number of queries that scales only linearly with the size of the ground set n. Moreover, our result automatically paves the way for developing a linear-time deterministic algorithm that achieves the tight 1 − 1/e approximation guarantee for monotone submodular maximization under a cardinality (size) constraint. To complement our positive results, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no deterministic or randomized algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than Ω(n/log(n)) function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a p-set system and multiple knapsack constraints. Finally, we evaluate the performance of our algorithms on multiple real-life applications, including movie recommendation, location summarization, Twitter text summarization, and video summarization.

שפה מקוריתאנגלית
כותר פרסום המארחAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
עורכיםS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
מוציא לאורNeural information processing systems foundation
מסת"ב (אלקטרוני)9781713871088
סטטוס פרסוםפורסם - 2022
פורסם באופן חיצוניכן
אירוע36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, ארצות הברית
משך הזמן: 28 נוב׳ 20229 דצמ׳ 2022

סדרות פרסומים

שםAdvances in Neural Information Processing Systems
כרך35
ISSN (מודפס)1049-5258

כנס

כנס36th Conference on Neural Information Processing Systems, NeurIPS 2022
מדינה/אזורארצות הברית
עירNew Orleans
תקופה28/11/229/12/22

הערה ביבליוגרפית

Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Submodular Maximization in Clean Linear Time'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי