Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel)

Paula Berman, Nitzan Meiri, Luiz Alberto Colnago, Tiago Bueno Moraes, Charles Linder, Ofer Levi, Yisrael Parmet, Michael Saunders, Zeev Wiesman

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


Background: 1H low field nuclear magnetic resonance (LF-NMR) relaxometry has been suggested as a tool to distinguish between different molecular ensembles in complex systems with differential segmental or whole molecular motion and/or different morphologies. In biodiesel applications the molecular structure versus liquid-phase packing morphologies of fatty acid methyl esters (FAMEs) influences physico-chemical characteristics of the fuel, including flow properties, operability during cold weather, blending, and more. Still, their liquid morphological structures have scarcely been studied. It was therefore the objective of this work to explore the potential of this technology for characterizing the molecular organization of FAMEs in the liquid phase. This was accomplished by using a combination of supporting advanced technologies. Results: We show that pure oleic acid (OA) and methyl oleate (MO) standards exhibited both similarities and differences in the 1H LF-NMR relaxation times (T2s) and peak areas, for a range of temperatures. Based on X-ray measurements, both molecules were found to possess a liquid crystal-like order, although a larger fluidity was found for MO, because as the temperature is increased, MO molecules separate both longitudinally and transversely from one another. In addition, both molecules exhibited a preferred direction of diffusion based on the apparent hydrodynamic radius. The close molecular packing arrangement and interactions were found to affect the translational and segmental motions of the molecules, as a result of dimerization of the head group in OA as opposed to weaker polar interactions in MO. Conclusions: A comprehensive model for the liquid crystal-like arrangement of FAMEs in the liquid phase is suggested. The differences in translational and segmental motions of the molecules were rationalized by the differences in the 1H LF-NMR T2 distributions of OA and MO, which was further supported by 13C high field (HF)-NMR spectra and 1H HF-NMR relaxation. The proposed assignment allows for material characterization based on parameters that contribute to properties in applications such as biodiesel fuels.

שפה מקוריתאנגלית
מספר המאמר12
מספר עמודים16
כתב עתBiotechnology for Biofuels
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 22 ינו׳ 2015
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Publisher Copyright:
© 2015 Berman et al.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel)'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי