Some results in the theory of genuine representations of the metaplectic double cover of GSp2n(F) over p-adic fields

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Let F be a p-adic field and let G(n)- and G0(n)- be the metaplectic double covers of the general symplectic group and symplectic group attached to a 2. n dimensional symplectic space over F. We show here that if n is odd then all the genuine irreducible representations of G(n)- are induced from a normal subgroup of finite index closely related to G0(n)-. Thus, we reduce, in this case, the theory of genuine admissible representations of G(n)- to the better understood corresponding theory of G0(n)-. For odd n we also prove the uniqueness of certain Whittaker functionals along with Rodier type of Heredity. Our results apply also to all parabolic subgroups of G(n)- if n is odd and to some of the parabolic subgroups of G(n)- if n is even. We prove some irreducibility criteria for parabolic induction on G(n)- for both even and odd n. As a corollary we show, among other results, that while for odd n, all genuine principal series representations of G(n)- induced from unitary representations are irreducible, there exist reducibility points on the unitary axis if n is even. We also list all the reducible genuine principal series representations of G(2)- provided that the F is not 2-adic.

שפה מקוריתאנגלית
עמודים (מ-עד)160-193
מספר עמודים34
כתב עתJournal of Algebra
כרך388
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 15 אוג׳ 2013
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Some results in the theory of genuine representations of the metaplectic double cover of GSp2n(F) over p-adic fields'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי