תקציר
We show that any smooth permutation w is characterized by the set C(w) of transpositions and 3-cycles that are ≤ w in the Bruhat order and that w is the product (in a certain order) of the transpositions in C(w). We also characterize the image of the map w 7! C(w). This map is closely related to the essential set (in the sense of Fulton) and gives another approach for enumerating smooth permutations and subclasses thereof. As an application, we obtain a result about the intersection of the Bruhat interval defined by a smooth permutation with a conjugate of a parabolic subgroup of the symmetric group. Finally, we relate covexillary permutations to smooth ones.
שפה מקורית | אנגלית |
---|---|
מספר המאמר | 81 |
כתב עת | Seminaire Lotharingien de Combinatoire |
מספר גיליון | 84 |
סטטוס פרסום | פורסם - 2020 |
הערה ביבליוגרפית
Publisher Copyright:© (), (). All Rights Reserved.