SIFCM-Shape: State-of-the-Art Algorithm for Clustering Correlated Time Series

Chen Avni, Maya Herman, Ofer Levi

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Time-Series clustering is an important and challenging problem in data mining that is used to gain an insight into the mechanism that generate the time series. Large volumes of time series sequences appear in almost every fields including astronomy, biology, meteorology, medicine, finance, robotics, engineering and others. With the increase of time series data availability and volume, many time series clustering algorithms have been proposed to extract valuable information. The Time Series Clustering algorithms can organized into three main groups depending upon whether they work directly on raw data, with features extracted from data or with model built to best reflect the data. In this article, we present a novel algorithm, SIFCM-Shape, for clustering correlated time series. The algorithm presented in this paper is based on K-Shape and Fuzzy c-Shape time series clustering algorithms. SIFCM-Shape algorithm improves K-Shape and Fuzzy c-Shape by adding a fuzzy membership degree that incorporate into clustering process. Moreover it also takes into account the correlation between time series. Hence the potential is that the clustering results using this method are expected to be more accurate for related time-series. We evaluated the algorithm on UCR real time series datasets and compare it between K-Shape and Fuzzy C-shape. Numerical experiments on 48 real time series data sets show that the new algorithm outperforms state-of-the-art shape-based clustering algorithms in terms of accuracy.

שפה מקוריתאנגלית
כותר פרסום המארחIntelligent Systems and Applications - Proceedings of the 2021 Intelligent Systems Conference IntelliSys
עורכיםKohei Arai
מוציא לאורSpringer Science and Business Media Deutschland GmbH
עמודים404-418
מספר עמודים15
מסת"ב (מודפס)9783030821951
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2021
אירוע Intelligent Systems Conference, IntelliSys 2021 - Virtual, Online
משך הזמן: 2 ספט׳ 20213 ספט׳ 2021

סדרות פרסומים

שםLecture Notes in Networks and Systems
כרך295
ISSN (מודפס)2367-3370
ISSN (אלקטרוני)2367-3389

כנס

כנס Intelligent Systems Conference, IntelliSys 2021
עירVirtual, Online
תקופה2/09/213/09/21

הערה ביבליוגרפית

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'SIFCM-Shape: State-of-the-Art Algorithm for Clustering Correlated Time Series'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי