Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Dvir Ginzburg, Itzik Malkiel, Oren Barkan, Avi Caciularu, Noam Koenigstein

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We present a novel model for the problem of ranking a collection of documents according to their semantic similarity to a source (query) document. While the problem of document-to-document similarity ranking has been studied, most modern methods are limited to relatively short documents or rely on the existence of “ground-truth” similarity labels. Yet, in most common real-world cases, similarity ranking is an unsupervised problem as similarity labels are unavailable. Moreover, an ideal model should not be restricted by documents' length. Hence, we introduce SDR, a self-supervised method for document similarity that can be applied to documents of arbitrary length. Importantly, SDR can be effectively applied to extremely long documents, exceeding the 4, 096 maximal token limit of Longformer. Extensive evaluations on large documents datasets show that SDR significantly outperforms its alternatives across all metrics. To accelerate future research on unlabeled long document similarity ranking, and as an additional contribution to the community, we herein publish two human-annotated test-sets of long documents similarity evaluation. The SDR code and datasets are publicly available.

שפה מקוריתאנגלית
כותר פרסום המארחFindings of the Association for Computational Linguistics
כותר משנה של פרסום המארחACL-IJCNLP 2021
עורכיםChengqing Zong, Fei Xia, Wenjie Li, Roberto Navigli
מוציא לאורAssociation for Computational Linguistics (ACL)
עמודים3088-3098
מספר עמודים11
מסת"ב (אלקטרוני)9781954085541
סטטוס פרסוםפורסם - 2021
פורסם באופן חיצוניכן
אירועFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021 - Virtual, Online
משך הזמן: 1 אוג׳ 20216 אוג׳ 2021

סדרות פרסומים

שםFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021

כנס

כנסFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021
עירVirtual, Online
תקופה1/08/216/08/21

הערה ביבליוגרפית

Publisher Copyright:
© 2021 Association for Computational Linguistics

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי