Resilient consensus for infinitely many processes: (Extended abstract)

Michael Merritt, Gadi Taubenfeld

פרסום מחקרי: פרק בספר / בדוח / בכנספרקביקורת עמיתים

תקציר

We provide results for implementing resilient consensus for a (countably) infinite collection of processes. - For a known number of faults, we prove the following equivalence result: For every t ≥ 1, there is a t-resilient consensus object for infinitely many processes if and only if there is a t-resilient consensus object for t + 1 processes. - For an unknown or infinite number of faults, we consider whether an infinite set of wait-free consensus objects, capable of solving consensus for any finite collection of processes, suffice to solve wait-free consensus for infinitely many processes. We show that this implication holds under an assumption precluding runs in which the number of simultaneously active processes is not bounded, leaving the general question open. All the proofs are constructive and several of the constructions have adaptive time complexity. (Reduced to the finite domain, some improve on the time complexity of known results.) Furthermore, we prove that the constructions are optimal in some space parameters by providing tight simultaneous-access and space lower bounds. Finally, using known techniques, we draw new conclusions on the universality of resilient consensus objects in the infinite domain.

שפה מקוריתאנגלית
כותר פרסום המארחLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
עורכיםFaith Ellen Fich
מוציא לאורSpringer Verlag
עמודים1-15
מספר עמודים15
מסת"ב (מודפס)354020184X, 9783540201847
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2003
פורסם באופן חיצוניכן

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך2848
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Resilient consensus for infinitely many processes: (Extended abstract)'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי