Recurrent Neural Network for Rain Estimation Using Commercial Microwave Links

Hai Victor Habi, Hagit Messer

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The use of recurrent neural networks (RNNtext{s}) to utilize measurements from commercial microwave links (CMLtext{s}) has recently gained attention. Whereas previous studies focused on the performance of methods for wet-dry classification, here we propose an RNN algorithm for estimating the rain-rate. We empirically analyzed the proposed algorithm, using real data, and compared it with the traditional power-law (PL)-based algorithm, commonly used for estimating rain from CML attenuation measurements. Our analysis shows that the data-driven RNN algorithm, when properly trained, outperforms the PL algorithm in terms of accuracy. On the other hand, the PL algorithm is simpler and more robust when dealing with a large variety of corruptions and adverse conditions. We then introduced a time normalization (TN) layer for controlling the trade-off between performance and robustness of the RNN methods, and demonstrated its performance.

שפה מקוריתאנגלית
מספר המאמר9153027
עמודים (מ-עד)3672-3681
מספר עמודים10
כתב עתIEEE Transactions on Geoscience and Remote Sensing
כרך59
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - מאי 2021
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Publisher Copyright:
© 1980-2012 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Recurrent Neural Network for Rain Estimation Using Commercial Microwave Links'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי