Rapid Synthesis of Massive Face Sets for Improved Face Recognition

Iacopo Masi, Tal Hassner, Anh Tuan Tran, Gerard Medioni

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Recent work demonstrated that computer graphics techniques can be used to improve face recognition performances by synthesizing multiple new views of faces available in existing face collections. By so doing, more images and more appearance variations are available for training, thereby improving the deep models trained on these images. Similar rendering techniques were also applied at test time to align faces in 3D and reduce appearance variations when comparing faces. These previous results, however, did not consider the computational cost of rendering: At training, rendering millions of face images can be prohibitive; at test time, rendering can quickly become a bottleneck, particularly when multiple images represent a subject. This paper builds on a number of observations which, under certain circumstances, allow rendering new 3D views of faces at a computational cost which is equivalent to simple 2D image warping. We demonstrate this by showing that the run-time of an optimized OpenGL rendering engine is slower than the simple Python implementation we designed for the same purpose. The proposed rendering is used in a face recognition pipeline and tested on the challenging IJB-A and Janus CS2 benchmarks. Our results show that our rendering is not only fast, but improves recognition accuracy.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים604-611
מספר עמודים8
מסת"ב (אלקטרוני)9781509040230
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 28 יוני 2017
אירוע12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - Washington, ארצות הברית
משך הזמן: 30 מאי 20173 יוני 2017

סדרות פרסומים

שםProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017

כנס

כנס12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017
מדינה/אזורארצות הברית
עירWashington
תקופה30/05/173/06/17

הערה ביבליוגרפית

Publisher Copyright:
© 2017 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Rapid Synthesis of Massive Face Sets for Improved Face Recognition'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי