Privacy preserving collaborative filtering by distributed mediation

Alon Ben Horin, Tamir Tassa

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Recommender systems have become very influential in our everyday decision making, e.g., helping us choose a movie from a content platform, or offering us suitable products on e-commerce websites. While most vendors who utilize recommender systems rely exclusively on training data consisting of past transactions that took place through them, the accuracy of recommendations can be improved if several vendors conjoin their datasets. Alas, such data sharing poses grave privacy concerns for both the vendors and the users. In this study we present secure multi-party protocols that enable several vendors to share their data, in a privacy-preserving manner, in order to allow more accurate Collaborative Filtering (CF). Shmueli and Tassa (RecSys 2017) introduced privacy-preserving CF protocols that rely on a mediator; namely, a third party that assists in performing the computations. They demonstrated the significant advantages of mediation in that context. We take here the mediation approach into the next level by using several independent mediators. Such distributed mediation maintains all of the advantages that were identified by Shmueli and Tassa, and offers additional ones, in comparison with the single-mediator protocols: stronger security and dramatically shorter runtimes. In addition, while all prior art assumed limited and unrealistic settings, in which each user can purchase any given item through only one vendor, we consider here a general and more realistic setting, which encompasses all previously considered settings, where users can choose between different competing vendors. We demonstrate the appealing performance of our protocols through extensive experimentation.

שפה מקוריתאנגלית
כותר פרסום המארחRecSys 2021 - 15th ACM Conference on Recommender Systems
מוציא לאורAssociation for Computing Machinery, Inc
עמודים332-341
מספר עמודים10
מסת"ב (אלקטרוני)9781450384582
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 13 ספט׳ 2021
אירוע15th ACM Conference on Recommender Systems, RecSys 2021 - Virtual, Online, הולנד
משך הזמן: 27 ספט׳ 20211 אוק׳ 2021

סדרות פרסומים

שםRecSys 2021 - 15th ACM Conference on Recommender Systems

כנס

כנס15th ACM Conference on Recommender Systems, RecSys 2021
מדינה/אזורהולנד
עירVirtual, Online
תקופה27/09/211/10/21

הערה ביבליוגרפית

Publisher Copyright:
© 2021 ACM.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Privacy preserving collaborative filtering by distributed mediation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי