Preserving privacy in region optimal DCOP algorithms

Tamir Tassa, Roie Zivan, Tal Grinshpoun

פרסום מחקרי: פרסום בכתב עתמאמר מכנסביקורת עמיתים

תקציר

Region-optimal algorithms are local search algorithms for the solution of Distributed Constraint Optimization Problems (DCOPs). In each iteration of the search in such algorithms, every agent selects a group of agents that comply with some selection criteria (each algorithm specifies different criteria). Then, the agent who selected the group, called the mediator, collects assignment information from the group and neighboring agents outside the group, in order to find an optimal set of assignments for its group's agents. A contest between mediators of adjacent groups determines which groups will replace their assignments in that iteration to the found optimal ones. In this work we present a framework called RODA (Region- Optimal DCOP Algorithm) that encompasses the algorithms in the region-optimality family, and in particular any method for selecting groups. We devise a secure implementation of RODA, called PRODA, which preserves constraint privacy and partial decision privacy. The two main cryptographic means that enable this privacy preservation are secret sharing and homomorphic encryption. We estimate the computational overhead of P-RODA with respect to RODA and give an upper bound that depends on the group and domain sizes and the graph topology but not on the number of agents. The estimations are backed with experimental results.

שפה מקוריתאנגלית
עמודים (מ-עד)496-502
מספר עמודים7
כתב עתIJCAI International Joint Conference on Artificial Intelligence
כרך2016-January
סטטוס פרסוםפורסם - 2016
אירוע25th International Joint Conference on Artificial Intelligence, IJCAI 2016 - New York, ארצות הברית
משך הזמן: 9 יולי 201615 יולי 2016

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Preserving privacy in region optimal DCOP algorithms'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי