תקציר
Man-made scenes are often densely packed, containing numerous objects, often identical, positioned in close proximity. We show that precise object detection in such scenes remains a challenging frontier even for state-of-the-art object detectors. We propose a novel, deep-learning based method for precise object detection, designed for such challenging settings. Our contributions include: (1) A layer for estimating the Jaccard index as a detection quality score; (2) a novel EM merging unit, which uses our quality scores to resolve detection overlap ambiguities; finally, (3) an extensive, annotated data set, SKU-110K, representing packed retail environments, released for training and testing under such extreme settings. Detection tests on SKU-110K, and counting tests on the CARPK and PUCPR+, show our method to outperform existing state-of-the-art with substantial margins.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
מוציא לאור | IEEE Computer Society |
עמודים | 5222-5231 |
מספר עמודים | 10 |
מסת"ב (אלקטרוני) | 9781728132938 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - יוני 2019 |
אירוע | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, ארצות הברית משך הזמן: 16 יוני 2019 → 20 יוני 2019 |
סדרות פרסומים
שם | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
כרך | 2019-June |
ISSN (מודפס) | 1063-6919 |
כנס
כנס | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Long Beach |
תקופה | 16/06/19 → 20/06/19 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 IEEE.