On weighted covering numbers and the Levi-Hadwiger conjecture

Shiri Artstein-Avidan, Boaz A. Slomka

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We define new natural variants of the notions of weighted covering and separation numbers and discuss them in detail. We prove a strong duality relation between weighted covering and separation numbers and prove a few relations between the classical and weighted covering numbers, some of which hold true without convexity assumptions and for general metric spaces. As a consequence, together with some volume bounds that we discuss, we provide a bound for the famous Levi-Hadwiger problem concerning covering a convex body by homothetic slightly smaller copies of itself, in the case of centrally symmetric convex bodies, which is qualitatively the same as the best currently known bound. We also introduce the weighted notion of the Levi-Hadwiger covering problem, and settle the centrally-symmetric case, thus also confirm the equivalent fractional illumination conjecture [19, Conjecture 7] in the case of centrally symmetric convex bodies (including the characterization of the equality case, which was unknown so far).

שפה מקוריתאנגלית
עמודים (מ-עד)125-155
מספר עמודים31
כתב עתIsrael Journal of Mathematics
כרך209
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 ספט׳ 2015
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Publisher Copyright:
© 2015, Hebrew University of Jerusalem.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On weighted covering numbers and the Levi-Hadwiger conjecture'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי