TY - JOUR
T1 - On Fixed Cost k-Flow Problems
AU - Hajiaghayi, Mohammad Taghi
AU - Khandekar, Rohit
AU - Kortsarz, Guy
AU - Nutov, Zeev
N1 - Publisher Copyright:
© 2014, Springer Science+Business Media New York.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {ue∣e ∈ E} and edge-costs {ce∣e ∈ E}, source-sink pair s, t ∈ V, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (A ∪ B, E) and an integer k > 0. The goal is to find a node subset S ⊆ A ∪ B of minimum size |S| such G has k pairwise edge-disjoint paths between S ∩ A and S ∩ B. We give an (Formula Presented) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {bv : v ∈ V}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+∈n approximation scheme for it using Group Steiner Tree techniques.
AB - In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {ue∣e ∈ E} and edge-costs {ce∣e ∈ E}, source-sink pair s, t ∈ V, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (A ∪ B, E) and an integer k > 0. The goal is to find a node subset S ⊆ A ∪ B of minimum size |S| such G has k pairwise edge-disjoint paths between S ∩ A and S ∩ B. We give an (Formula Presented) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {bv : v ∈ V}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+∈n approximation scheme for it using Group Steiner Tree techniques.
KW - Approximation algorithms
KW - Fixed cost flow
KW - Group Steiner tree
KW - Network design
UR - http://www.scopus.com/inward/record.url?scp=84952950970&partnerID=8YFLogxK
U2 - 10.1007/s00224-014-9572-6
DO - 10.1007/s00224-014-9572-6
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84952950970
SN - 1432-4350
VL - 58
SP - 4
EP - 18
JO - Theory of Computing Systems
JF - Theory of Computing Systems
IS - 1
ER -