On Fixed Cost k-Flow Problems

Mohammad Taghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, Zeev Nutov

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {ue∣e ∈ E} and edge-costs {ce∣e ∈ E}, source-sink pair s, t ∈ V, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (A ∪ B, E) and an integer k > 0. The goal is to find a node subset S ⊆ A ∪ B of minimum size |S| such G has k pairwise edge-disjoint paths between S ∩ A and S ∩ B. We give an (Formula Presented) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {bv : v ∈ V}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+∈n approximation scheme for it using Group Steiner Tree techniques.

שפה מקוריתאנגלית
עמודים (מ-עד)4-18
מספר עמודים15
כתב עתTheory of Computing Systems
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 ינו׳ 2016

הערה ביבליוגרפית

Publisher Copyright:
© 2014, Springer Science+Business Media New York.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On Fixed Cost k-Flow Problems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי