תקציר
Several methods have been suggested for estimating the parameters of an auto-regressive (AR) process where the innovation process is an independent, identically distributed (IID) α-stable process. The performance of the proposed algorithms has been studied by simulations. We suggest a novel, maximum likelihood (ML) type method for the same problem. Actually, we suggest use of the ML estimator for the Cauchy distribution for any 1 ≤ α <2. The performance of the proposed method is studied by simulations and its superiority over the existing methods is demonstrated. The simulations have been carried out carefully so the stationarity of the resulting AR process is guaranteed.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, SPW-HOS 1999 |
מוציא לאור | Institute of Electrical and Electronics Engineers Inc. |
עמודים | 237-240 |
מספר עמודים | 4 |
מסת"ב (אלקטרוני) | 0769501400, 9780769501406 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 1999 |
פורסם באופן חיצוני | כן |
אירוע | 1999 IEEE Signal Processing Workshop on Higher-Order Statistics, SPW-HOS 1999 - Caesarea, ישראל משך הזמן: 14 יוני 1999 → 16 יוני 1999 |
סדרות פרסומים
שם | Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, SPW-HOS 1999 |
---|
כנס
כנס | 1999 IEEE Signal Processing Workshop on Higher-Order Statistics, SPW-HOS 1999 |
---|---|
מדינה/אזור | ישראל |
עיר | Caesarea |
תקופה | 14/06/99 → 16/06/99 |
הערה ביבליוגרפית
Publisher Copyright:© 1999 IEEE.