Neuromorphic NEF-Based Inverse Kinematics and PID Control

Yuval Zaidel, Albert Shalumov, Alex Volinski, Lazar Supic, Elishai Ezra Tsur

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


Neuromorphic implementation of robotic control has been shown to outperform conventional control paradigms in terms of robustness to perturbations and adaptation to varying conditions. Two main ingredients of robotics are inverse kinematic and Proportional–Integral–Derivative (PID) control. Inverse kinematics is used to compute an appropriate state in a robot's configuration space, given a target position in task space. PID control applies responsive correction signals to a robot's actuators, allowing it to reach its target accurately. The Neural Engineering Framework (NEF) offers a theoretical framework for a neuromorphic encoding of mathematical constructs with spiking neurons for the implementation of functional large-scale neural networks. In this work, we developed NEF-based neuromorphic algorithms for inverse kinematics and PID control, which we used to manipulate 6 degrees of freedom robotic arm. We used online learning for inverse kinematics and signal integration and differentiation for PID, offering high performing and energy-efficient neuromorphic control. Algorithms were evaluated in simulation as well as on Intel's Loihi neuromorphic hardware.

שפה מקוריתאנגלית
מספר המאמר631159
כתב עתFrontiers in Neurorobotics
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 3 פבר׳ 2021

הערה ביבליוגרפית

Publisher Copyright:
© Copyright © 2021 Zaidel, Shalumov, Volinski, Supic and Ezra Tsur.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Neuromorphic NEF-Based Inverse Kinematics and PID Control'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי