Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Brain-inspired hardware designs realize neural principles in electronics to provide high-performing, energy-efficient frameworks for artificial intelligence. The Neural Engineering Framework (NEF) brings forth a theoretical framework for representing high-dimensional mathematical constructs with spiking neurons to implement functional large-scale neural networks. Here, we present OZ, a programable analog implementation of NEF-inspired spiking neurons. OZ neurons can be dynamically programmed to feature varying high-dimensional response curves with positive and negative encoders for a neuromorphic distributed representation of normalized input data. Our hardware design demonstrates full correspondence with NEF across firing rates, encoding vectors, and intercepts. OZ neurons can be independently configured in real-time to allow efficient spanning of a representation space, thus using fewer neurons and therefore less power for neuromorphic data representation.

שפה מקוריתאנגלית
מספר המאמר627221
כתב עתFrontiers in Neuroscience
כרך15
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 22 פבר׳ 2021

הערה ביבליוגרפית

Publisher Copyright:
© Copyright © 2021 Hazan and Ezra Tsur.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי