תקציר
In the past few decades, bioinspired hexapod walking robots have attracted increasing attention, mainly due to their potential to efficiently traverse rough terrains. Recently, neuromorphic (brain-inspired) robotic control has been shown to outperform conventional control paradigms in stochastic environments. In this work, we propose a neuromorphic adaptive body leveling algorithm for a hexapod walking robot during transversal over multi-leveled terrain. We demonstrate adaptive control with distributed accelerator-driven neuro-integrators with only a few thousand spiking neurons. We further propose a framework for the integration of MuJoCo, a modeling environment, and Nengo, a spiking neural networks compiler, for efficient evaluation of neuromorphic control over high degrees of freedom robotic systems in realistic physics-driven scenarios.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings |
מוציא לאור | Institute of Electrical and Electronics Engineers Inc. |
מסת"ב (אלקטרוני) | 9781728172040 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2021 |
אירוע | 2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021 - Virtual, Online, גרמניה משך הזמן: 6 אוק׳ 2021 → 9 אוק׳ 2021 |
סדרות פרסומים
שם | BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings |
---|
כנס
כנס | 2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021 |
---|---|
מדינה/אזור | גרמניה |
עיר | Virtual, Online |
תקופה | 6/10/21 → 9/10/21 |
הערה ביבליוגרפית
Publisher Copyright:© 2021 IEEE.