More constraints, smaller coresets: Constrained matrix approximation of sparse big data

Dan Feldman, Tamir Tassa

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We suggest a generic data reduction technique with provable guarantees for computing the low rank approximation of a matrix under some ℓz error, and constrained factorizations, such as the Non-negative Matrix Factorization (NMF). Our main algorithm reduces a given n × d matrix into a small, ε-dependent, weighted subset C of its rows (known as a coreset), whose size is independent of both n and d. We then prove that applying existing algorithms on the resulting coreset can be turned into (1 + ε)-approximations for the original (large) input matrix. In particular, we provide the first linear time approximation scheme (LTAS) for the rank-one NMF. The coreset C can be computed in parallel and using only one pass over a possibly unbounded stream of row vectors. In this sense we improve the result in [4] (Best paper of STOC 2013). Moreover, since C is a subset of these rows, its construction time, as well as its sparsity (number of non-zeroes entries) and the sparsity of the resulting low rank approximation depend on the maximum sparsity of an input row, and not on the actual dimension d. In this sense, we improve the result of Libery [21] (Best paper of KDD 2013) and answer affirmably, and in a more general setting, his open question of computing such a coreset. We implemented our coreset and demonstrate it by turning Matlab's NMF off-line function that gets a matrix in the memory of a single machine, into a streaming algorithm that runs in parallel on 64 machines on Amazon's cloud and returns sparse NMF factorization. Source code is provided for reproducing the experiments and integration with existing and future algorithms.

שפה מקוריתאנגלית
כותר פרסום המארחKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
מוציא לאורAssociation for Computing Machinery
עמודים249-258
מספר עמודים10
מסת"ב (אלקטרוני)9781450336642
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 10 אוג׳ 2015
אירוע21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, אוסטרליה
משך הזמן: 10 אוג׳ 201513 אוג׳ 2015

סדרות פרסומים

שםProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
כרך2015-August

כנס

כנס21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
מדינה/אזוראוסטרליה
עירSydney
תקופה10/08/1513/08/15

הערה ביבליוגרפית

Publisher Copyright:
© 2015 ACM.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'More constraints, smaller coresets: Constrained matrix approximation of sparse big data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי