תקציר
We present MetricBERT, a BERT-based model that learns to embed text under a well-defined similarity metric while simultaneously adhering to the “traditional” masked-language task. We focus on downstream tasks of learning similarities for recommendations where we show that MetricBERT outperforms state-of-the-art alternatives, sometimes by a substantial margin. We conduct extensive evaluations of our method and its different variants, showing that our training objective is highly beneficial over a traditional contrastive loss, a standard cosine similarity objective, and six other baselines. As an additional contribution, we publish a dataset of video games descriptions along with a test set of similarity annotations crafted by a domain expert.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings |
מוציא לאור | Institute of Electrical and Electronics Engineers Inc. |
עמודים | 8142-8146 |
מספר עמודים | 5 |
מסת"ב (אלקטרוני) | 9781665405409 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2022 |
אירוע | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, סינגפור משך הזמן: 23 מאי 2022 → 27 מאי 2022 |
סדרות פרסומים
שם | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
כרך | 2022-May |
ISSN (מודפס) | 1520-6149 |
כנס
כנס | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 |
---|---|
מדינה/אזור | סינגפור |
עיר | Virtual, Online |
תקופה | 23/05/22 → 27/05/22 |
הערה ביבליוגרפית
Publisher Copyright:© 2022 IEEE