Metric cotype

Manor Mendel, Assaf Naor

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We introduce the notion of cotype of a metric space, and prove that for Banach spaces it coincides with the classical notion of Rademacher cotype. This yields a concrete version of Ribe's theorem, settling a long standing open problem in the nonlinear theory of Banach spaces. We apply our results to several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse embeddings, settling in particular the problem of classifying when Lp coarsely or uniformly embeds into Lq. We also prove a nonlinear analog of the Maurey-Pisier theorem, and use it to answer a question posed by Arora, Lovász, Newman, Rabani, Rabinovich and Vempala, and to obtain quantitative bounds in a metric Ramsey theorem due to Matoušek.

שפה מקוריתאנגלית
עמודים (מ-עד)247-298
מספר עמודים52
כתב עתAnnals of Mathematics
כרך168
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יולי 2008

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Metric cotype'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי