תקציר
We introduce the notion of metric cotype, a property of metric spaces related to a property of normed spaces, called Rademacher cotype. Apart from settling a long standing open problem in metric geometry, this property is used to prove the following dichotomy: A family of metric spaces F is either almost universal (i.e., contains any finite metric space with any distortion > 1), or there exists α > 0, and arbitrarily large n-point metrics whose distortion when embedded in any member of F is at least Ω ((log n) α). The same property is also used to prove strong non-embeddability theorems of L q into L p, when q > max{2, p}. Finally we use metric cotype to obtain a new type of isoperimetric inequality on the discrete torus.
שפה מקורית | אנגלית |
---|---|
עמודים | 79-88 |
מספר עמודים | 10 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2006 |
אירוע | Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms - Miami, FL, ארצות הברית משך הזמן: 22 ינו׳ 2006 → 24 ינו׳ 2006 |
כנס
כנס | Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Miami, FL |
תקופה | 22/01/06 → 24/01/06 |