תקציר
Advancements in the generation quality of various Generative Models (GMs) has made it necessary to not only perform binary manipulation detection but also localize the modified pixels in an image. However, prior works termed as passive for manipulation localization exhibit poor generalization performance over unseen GMs and attribute modifications. To combat this issue, we propose a proactive scheme for manipulation localization, termed MaLP. We encrypt the real images by adding a learned template. If the image is manipulated by any GM, this added protection from the template not only aids binary detection but also helps in identifying the pixels modified by the GM. The template is learned by leveraging local and global-level features estimated by a two-branch architecture. We show that MaLP performs better than prior passive works. We also show the generalizability of MaLP by testing on 22 different GMs, providing a benchmark for future research on manipulation localization. Finally, we show that MaLP can be used as a discriminator for improving the generation quality of GMs. Our models/codes are available at www.github.com/vishal3477/pro-loc.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
מוציא לאור | IEEE Computer Society |
עמודים | 12343-12352 |
מספר עמודים | 10 |
מסת"ב (אלקטרוני) | 9798350301298 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2023 |
אירוע | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, קנדה משך הזמן: 18 יוני 2023 → 22 יוני 2023 |
סדרות פרסומים
שם | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
כרך | 2023-June |
ISSN (מודפס) | 1063-6919 |
כנס
כנס | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
---|---|
מדינה/אזור | קנדה |
עיר | Vancouver |
תקופה | 18/06/23 → 22/06/23 |
הערה ביבליוגרפית
Publisher Copyright:© 2023 IEEE.