Lp Christoffel functions, Lp universality, and Paley-Wiener spaces

Eli Levin, Doron S. Lubinsky

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Let ω be a regular measure on the unit circle in ℂ, and let p > 0. We establish asymptotic behavior, as n→∞, for the Lp Christoffel function (formula presented.) at Lebesgue points z on the unit circle in ℂ, where ω′ is lower semi-continuous. While bounds for these are classical, asymptotics have never been established for p ≠ 2. The limit involves an extremal problem in Paley-Wiener space. As a consequence, we deduce universality type limits for the extremal polynomials, which reduce to random-matrix limits involving the sinc kernel in the case p = 2. We also present analogous results for Lp Christoffel functions on [−1, 1].

שפה מקוריתאנגלית
עמודים (מ-עד)243-283
מספר עמודים41
כתב עתJournal d'Analyse Mathematique
כרך125
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2015

הערה ביבליוגרפית

Publisher Copyright:
© 2015, Hebrew University Magnes Press.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Lp Christoffel functions, Lp universality, and Paley-Wiener spaces'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי