Learning Distance Functions using Equivalence Relations

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


We address the problem of learning distance metrics using side-information in the form of groups of "similar" points. We propose to use the RCA algorithm, which is a simple and efficient algorithm for learning a full ranked Mahalanobis metric (Shental et al., 2002). We first show that RCA obtains the solution to an interesting optimization problem, founded on an information theoretic basis. If the Mahalanobis matrix is allowed to be singular, we show that Fisher's linear discriminant followed by RCA is the optimal dimensionality reduction algorithm under the same criterion. We then show how this optimization problem is related to the criterion optimized by another recent algorithm for metric learning (Xing et al., 2002), which uses the same kind of side information. We empirically demonstrate that learning a distance metric using the RCA algorithm significantly improves clustering performance, similarly to the alternative algorithm. Since the RCA algorithm is much more efficient and cost effective than the alternative, as it only uses closed form expressions of the data, it seems like a preferable choice for the learning of full rank Mahalanobis distances.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings, Twentieth International Conference on Machine Learning
עורכיםT. Fawcett, N. Mishra
מספר עמודים8
סטטוס פרסוםפורסם - 2003
פורסם באופן חיצוניכן
אירועProceedings, Twentieth International Conference on Machine Learning - Washington, DC, ארצות הברית
משך הזמן: 21 אוג׳ 200324 אוג׳ 2003

סדרות פרסומים

שםProceedings, Twentieth International Conference on Machine Learning


כנסProceedings, Twentieth International Conference on Machine Learning
מדינה/אזורארצות הברית
עירWashington, DC

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Learning Distance Functions using Equivalence Relations'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי