תקציר
The field of self-supervised monocular depth estimation has seen huge advancements in recent years. Most methods assume stereo data is available during training but usually under-utilize it and only treat it as a reference signal. We propose a novel self-supervised approach which uses both left and right images equally during training, but can still be used with a single input image at test time, for monocular depth estimation. Our Siamese network architecture consists of two, twin networks, each learns to predict a disparity map from a single image. At test time, however, only one of these networks is used in order to infer depth. We show state-of-the-art results on the standard KITTI Eigen split benchmark as well as being the highest scoring self-supervised method on the new KITTI single view benchmark. To demonstrate the ability of our method to generalize to new data sets, we further provide results on the Make3D benchmark, which was not used during training.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 |
מוציא לאור | IEEE Computer Society |
עמודים | 2886-2895 |
מספר עמודים | 10 |
מסת"ב (אלקטרוני) | 9781728125060 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - יוני 2019 |
אירוע | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, ארצות הברית משך הזמן: 16 יוני 2019 → 20 יוני 2019 |
סדרות פרסומים
שם | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
כרך | 2019-June |
ISSN (מודפס) | 2160-7508 |
ISSN (אלקטרוני) | 2160-7516 |
כנס
כנס | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Long Beach |
תקופה | 16/06/19 → 20/06/19 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 IEEE.