תקציר
We consider the problem of finding a minimum edge cost subgraph of a graph satisfying both given node-connectivity requirements and degree upper bounds on nodes. We present an iterative rounding algorithm of the biset linear programming relaxation for this problem. For directed graphs and k-out-connectivity requirements from a root, our algorithm computes a solution that is a 2-approximation on the cost, and the degree of each node v in the solution is at most 2b(ρ) + O(k), where b(ρ) is the degree upper bound on v. For undirected graphs and elementconnectivity requirements with maximum connectivity requirement k, our algorithm computes a solution that is a 4-approximation on the cost, and the degree of each node v in the solution is at most 4b(ρ) + O(k). These ratios improve the previous O(log k)-approximation on the cost and O(2kb(ρ))-approximation on the degrees. Our algorithms can be used to improve approximation ratios for other node-connectivity problems such as undirected k-out-connectivity, directed and undirected k-connectivity, and undirected rooted k-connectivity and subset k-connectivity.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 1202-1229 |
מספר עמודים | 28 |
כתב עת | SIAM Journal on Computing |
כרך | 44 |
מספר גיליון | 5 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2015 |
הערה ביבליוגרפית
Publisher Copyright:© 2015 Society for Industrial and Applied Mathematics.