Iterative rounding approximation algorithms for degree-bounded node-connectivity network design

Takuro Fukunaga, Zeev Nutov, R. Ravi

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We consider the problem of finding a minimum edge cost subgraph of a graph satisfying both given node-connectivity requirements and degree upper bounds on nodes. We present an iterative rounding algorithm of the biset linear programming relaxation for this problem. For directed graphs and k-out-connectivity requirements from a root, our algorithm computes a solution that is a 2-approximation on the cost, and the degree of each node v in the solution is at most 2b(ρ) + O(k), where b(ρ) is the degree upper bound on v. For undirected graphs and elementconnectivity requirements with maximum connectivity requirement k, our algorithm computes a solution that is a 4-approximation on the cost, and the degree of each node v in the solution is at most 4b(ρ) + O(k). These ratios improve the previous O(log k)-approximation on the cost and O(2kb(ρ))-approximation on the degrees. Our algorithms can be used to improve approximation ratios for other node-connectivity problems such as undirected k-out-connectivity, directed and undirected k-connectivity, and undirected rooted k-connectivity and subset k-connectivity.

שפה מקוריתאנגלית
עמודים (מ-עד)1202-1229
מספר עמודים28
כתב עתSIAM Journal on Computing
כרך44
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2015

הערה ביבליוגרפית

Publisher Copyright:
© 2015 Society for Industrial and Applied Mathematics.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Iterative rounding approximation algorithms for degree-bounded node-connectivity network design'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי