תקציר
Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | 2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings |
עורכים | Kostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen |
מוציא לאור | IEEE Computer Society |
מסת"ב (אלקטרוני) | 9781509007462 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 8 נוב׳ 2016 |
פורסם באופן חיצוני | כן |
אירוע | 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, איטליה משך הזמן: 13 ספט׳ 2016 → 16 ספט׳ 2016 |
סדרות פרסומים
שם | IEEE International Workshop on Machine Learning for Signal Processing, MLSP |
---|---|
כרך | 2016-November |
ISSN (מודפס) | 2161-0363 |
ISSN (אלקטרוני) | 2161-0371 |
כנס
כנס | 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings |
---|---|
מדינה/אזור | איטליה |
עיר | Vietri sul Mare, Salerno |
תקופה | 13/09/16 → 16/09/16 |
הערה ביבליוגרפית
Publisher Copyright:© 2016 IEEE.