Is Probing All You Need? Indicator Tasks as an Alternative to Probing Embedding Spaces

Tal Levy, Omer Goldman, Reut Tsarfaty

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

The ability to identify and control different kinds of linguistic information encoded in vector representations of words has many use cases, especially for explainability and bias removal. This is usually done via a set of simple classification tasks, termed probes, to evaluate the information encoded in the embedding space. However, the involvement of a trainable classifier leads to entanglement between the probe's results and the classifier's nature. As a result, contemporary works on probing include tasks that do not involve training of auxiliary models. In this work we introduce the term indicator tasks for non-trainable tasks which are used to query embedding spaces for the existence of certain properties, and claim that this kind of tasks may point to a direction opposite to probes, and that this contradiction complicates the decision on whether a property exists in an embedding space. We demonstrate our claims with two test cases, one dealing with gender debiasing and another with the erasure of morphological information from embedding spaces. We show that the application of a suitable indicator provides a more accurate picture of the information captured and removed compared to probes. We thus conclude that indicator tasks should be implemented and taken into consideration when eliciting information from embedded representations.

שפה מקוריתאנגלית
כותר פרסום המארחFindings of the Association for Computational Linguistics
כותר משנה של פרסום המארחEMNLP 2023
מוציא לאורAssociation for Computational Linguistics (ACL)
עמודים5243-5254
מספר עמודים12
מסת"ב (אלקטרוני)9798891760615
סטטוס פרסוםפורסם - 2023
פורסם באופן חיצוניכן
אירוע2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, סינגפור
משך הזמן: 6 דצמ׳ 202310 דצמ׳ 2023

סדרות פרסומים

שםFindings of the Association for Computational Linguistics: EMNLP 2023

כנס

כנס2023 Findings of the Association for Computational Linguistics: EMNLP 2023
מדינה/אזורסינגפור
עירSingapore
תקופה6/12/2310/12/23

הערה ביבליוגרפית

Publisher Copyright:
© 2023 Association for Computational Linguistics.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Is Probing All You Need? Indicator Tasks as an Alternative to Probing Embedding Spaces'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי