In search of the role’s footprints in client-therapist dialogues

Anat Lerner, Vered Silber-Varod, Fernando Batista, Helena Moniz

פרסום מחקרי: פרסום בכתב עתמאמר מכנסביקורת עמיתים


The goal of this research is to identify speaker’s role via machine learning of broad acoustic parameters, in order to understand how an occupation, or a role, affects voice characteristics. The examined corpus consists of recordings taken under the same psychological paradigm (Process Work). Four interns were involved in four genuine client-therapist treatment sessions, where each individual had to train her therapeutic skills on her colleague that, in her turn, participated as a client. This uniform setting provided a unique opportunity to examine how role affects speaker’s prosody. By a collection of machine learning algorithms, we tested automatic classification of the role across sessions. Results based on the acoustic properties show high classification rates, suggesting that there are discriminative acoustic features of speaker’s role, as either a therapist or a client.

שפה מקוריתאנגלית
עמודים (מ-עד)400-404
מספר עמודים5
כתב עתProceedings of the International Conference on Speech Prosody
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2016
אירוע8th Speech Prosody 2016 - Boston, ארצות הברית
משך הזמן: 31 מאי 20163 יוני 2016

הערה ביבליוגרפית

Publisher Copyright:
© 2016, International Speech Communications Association. All rights reserved.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'In search of the role’s footprints in client-therapist dialogues'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי