Improved bounds in the metric cotype inequality for Banach spaces

Ohad Giladi, Manor Mendel, Assaf Naor

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

It is shown that if (X,||·||X) is a Banach space with Rademacher cotype q then for every integer n there exists an even integer m≲n1+1/q such that for every f:Zmn→X we have. where the expectations are with respect to uniformly chosen x∈Zmn and ε∈{-1,0,1}n, and all the implied constants may depend only on q and the Rademacher cotype q constant of X. This improves the bound of m≲n2+1q from Mendel and Naor (2008) [13]. The proof of (1) is based on a "smoothing and approximation" procedure which simplifies the proof of the metric characterization of Rademacher cotype of Mendel and Naor (2008) [13]. We also show that any such "smoothing and approximation" approach to metric cotype inequalities must require m≳n1/2 + 1/q.

שפה מקוריתאנגלית
עמודים (מ-עד)164-194
מספר עמודים31
כתב עתJournal of Functional Analysis
כרך260
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 ינו׳ 2011

הערה ביבליוגרפית

Funding Information:
O.G. was partially supported by NSF grant CCF-0635078. M.M. was partially supported by ISF grant no. 221/07, BSF grant no. 2006009, and a gift from Cisco research center. A.N. was supported in part by NSF grants CCF-0635078 and CCF-0832795, BSF grant 2006009, and the Packard Foundation.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Improved bounds in the metric cotype inequality for Banach spaces'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי