Improved Approximation Algorithms for Covering Pliable Set Families and Flexible Graph Connectivity

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

A classic result of Williamson, Goemans, Mihail, and Vazirani [STOC 1993: 708–717] states that the problem of covering an uncrossable set family by a min-cost edge set admits approximation ratio 2, by a primal-dual algorithm with a reverse delete phase. Recently, Bansal, Cheriyan, Grout, and Ibrahimpur [ICALP 2023: 15:1-15:19] showed that this algorithm achieves approximation ratio 16 for a larger class of so called γ-pliable set families, that have much weaker uncrossing properties. In this paper we will improve the approximation ratio to 10. Using this result and other techniques, we also improve approximation ratios for the following two problems related to the Capacitatedk-Edge Connected Spanning Subgraph (Cap-k-ECSS) problem. Near Min-Cuts Cover: Given a graph G0=(V,E0) and an edge set E on V with costs, find a min-cost edge set J⊆E that covers all cuts with at most k-1 edges of the graph G0. We improve the approximation ratio from 16 to 10. We also obtain approximation ratio k-λ0+1+ϵ, where λ0 is the edge connectivity of G0, which is better than ratio 10 when k-λ0≤8.(k, q)-Flexible Graph Connectivity ((k, q)-FGC): Given a graph G=(V,E) with edge costs, a set U⊆E of ”unsafe” edges, and integers k, q, find a min-cost subgraph H of G such that every cut of H has at least k safe edges or at least k+q edges. We will show that (k, 1)-FGC admits approximation ratio 3.5+ϵ if k is odd (improving previous ratio 4), that (k, 2)-FGC admits approximation ratio 7+ϵ (improving previous ratio 20), and that (k, 3)-FGC admits approximation ratio 16 for k even (improving previous ratio 22). We also show that for unit costs, (k, q)-FGC admits approximation ratio α+2qk, where α≈1+O(1/k) is an approximation ratio for the Min-Sizek-Edge-Connected Spanning Subgraph problem. Near Min-Cuts Cover: Given a graph G0=(V,E0) and an edge set E on V with costs, find a min-cost edge set J⊆E that covers all cuts with at most k-1 edges of the graph G0. We improve the approximation ratio from 16 to 10. We also obtain approximation ratio k-λ0+1+ϵ, where λ0 is the edge connectivity of G0, which is better than ratio 10 when k-λ0≤8. (k, q)-Flexible Graph Connectivity ((k, q)-FGC): Given a graph G=(V,E) with edge costs, a set U⊆E of ”unsafe” edges, and integers k, q, find a min-cost subgraph H of G such that every cut of H has at least k safe edges or at least k+q edges. We will show that (k, 1)-FGC admits approximation ratio 3.5+ϵ if k is odd (improving previous ratio 4), that (k, 2)-FGC admits approximation ratio 7+ϵ (improving previous ratio 20), and that (k, 3)-FGC admits approximation ratio 16 for k even (improving previous ratio 22). We also show that for unit costs, (k, q)-FGC admits approximation ratio α+2qk, where α≈1+O(1/k) is an approximation ratio for the Min-Sizek-Edge-Connected Spanning Subgraph problem.

שפה מקוריתאנגלית
כותר פרסום המארחWAOA
עורכיםMarcin Bieńkowski, Matthias Englert
מוציא לאורSpringer Science and Business Media Deutschland GmbH
עמודים151-166
מספר עמודים16
מסת"ב (מודפס)9783031813955
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2025
אירוע22nd International Workshop on Approximation and Online Algorithms, WAOA 2024 - Egham, בריטניה
משך הזמן: 5 ספט׳ 20246 ספט׳ 2024

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך15269 LNCS
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

כנס

כנס22nd International Workshop on Approximation and Online Algorithms, WAOA 2024
מדינה/אזורבריטניה
עירEgham
תקופה5/09/246/09/24

הערה ביבליוגרפית

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Improved Approximation Algorithms for Covering Pliable Set Families and Flexible Graph Connectivity'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי