Graphs with tiny vector chromatic numbers and huge chromatic numbers

Uriel Feige, Michael Langberg, Gideon Schechtman

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246-265] introduced the notion of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly Δ 1-2/k colors. Here A is the maximum degree in the graph and is assumed to be of the order of n 2 for some 0 < 6 < 1. Their results play a major role in the best approximation algorithms used for coloring and for maximum independent sets. We show that for every positive integer k there are graphs that are vector k-colorable but do not have independent sets significantly larger than n/Δ 1-2/k (and hence cannot be colored with significantly fewer than Δ 1-2/k colors). For k = O(log n/ log log n) we show vector k-colorable graphs that do not have independent sets of size (logn) c, for some constant c. This shows that the vector chromatic number does not approximate the chromatic number within factors better than n/polylogn. As part of our proof, we analyze "property testing" algorithms that distinguish between graphs that have an independent set of size n/k, and graphs that are "far" from having such an independent set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J. ACM, 45 (1998), pp. 653-750] for this problem.

שפה מקוריתאנגלית
עמודים (מ-עד)1338-1368
מספר עמודים31
כתב עתSIAM Journal on Computing
כרך33
מספר גיליון6
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2004
פורסם באופן חיצוניכן

הערה ביבליוגרפית

Funding Information:
This paper was supported by Konkuk University in 2000.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Graphs with tiny vector chromatic numbers and huge chromatic numbers'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי