Flow-level loss detection with Δ-sketches

Shir Landau Feibish, Zaoxing Liu, Nikita Ivkin, Xiaoqi Chen, Vladimir Braverman, Jennifer Rexford

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


Packet drops caused by congestion are a fundamental problem in network operation. Yet, it is difficult to detect where drops are happening, let alone which flows are most affected. Detecting the small-timescale drops caused by short bursts of traffic is even more challenging, and traditional monitoring techniques can easily miss them. To uncover packet drops as they occur inside a switch, the analysis must be real-time, fine-grained, and efficient. However, modern switches have distributed packet-processing pipelines that see either the arriving or departing traffic, but not the packet drops. Additionally, they do not have enough memory to store per-flow state. Our MIDST system addresses these challenges through a distributed compact data structure with lightweight coordination between ingress and egress pipelines. MIDST identifies the flows experiencing loss, as well as the bursty flows responsible, across different burst durations. Our evaluation with real-world traces and TCP connections shows that MIDST uses little memory (e.g., 320KB) while providing high accuracy (95% to 98%) under varying loss rates and burst durations. We evaluate a low-rate DDoS attack and demonstrate the potential use of our measurement results for attack detection and mitigation.

שפה מקוריתאנגלית
כותר פרסום המארחSOSR 2022 - Proceedings of the 2022 Symposium on SDN Research
מוציא לאורAssociation for Computing Machinery, Inc
מספר עמודים8
מסת"ב (אלקטרוני)9781450398923
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 19 אוק׳ 2022
אירוע2002 ACM SIGCOMM Symposium on SDN Research, SOSR 2022 - Virtual, Online, ארצות הברית
משך הזמן: 20 אוק׳ 2022 → …

סדרות פרסומים

שםSOSR 2022 - Proceedings of the 2022 Symposium on SDN Research


כנס2002 ACM SIGCOMM Symposium on SDN Research, SOSR 2022
מדינה/אזורארצות הברית
עירVirtual, Online
תקופה20/10/22 → …

הערה ביבליוגרפית

Publisher Copyright:
© 2022 ACM.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Flow-level loss detection with Δ-sketches'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי