תקציר
Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MinilmageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
מוציא לאור | IEEE Computer Society |
עמודים | 9079-9088 |
מספר עמודים | 10 |
מסת"ב (אלקטרוני) | 9781665469463 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2022 |
פורסם באופן חיצוני | כן |
אירוע | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, ארצות הברית משך הזמן: 19 יוני 2022 → 24 יוני 2022 |
סדרות פרסומים
שם | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
כרך | 2022-June |
ISSN (מודפס) | 1063-6919 |
כנס
כנס | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | New Orleans |
תקופה | 19/06/22 → 24/06/22 |
הערה ביבליוגרפית
Publisher Copyright:© 2022 IEEE.